Application of shifted delta cepstral features in speaker verification
نویسندگان
چکیده
Recently, Shifted Delta Cepstral (SDC) feature was reported to produce superior performance to the delta and delta-delta features in cepstral feature based language identification (LID) systems [1, 2]. This paper examines the application of SDC features in speaker verification and evaluates its robustness to channel mismatch, manner of speaking and session variability. The result of the experiment reflects superior or at least similar performance of SDC regarding delta and delta-delta features in speaker verification.
منابع مشابه
Selection of the best set of shifted delta cepstral features in speaker verification using mutual information
Shifted delta cepstral (SDC) features, obtained by concatenating delta cepstral features across multiples speech frames, were recently reported to produce superior performance to delta cepstral features in language and speaker recognition systems. In this paper, the use of SDC features in a speaker verification experiment is reported. Mutual information between SDC features and identity of a sp...
متن کاملSpeaker Verification with Shifted Delta Cepstral Features: Its Pseudo-Prosodic Behavior
This paper examines the linear relation between Shifted Delta Cepstral (SDC) features and the dynamic of prosodic features. SDC features were reported to produce superior performance to ∆ features in Language Identification and speaker recognition systems. A selection of more correlated SDC features is used in speaker verification to evaluate its robustness to channel/handset mismatch. The expe...
متن کاملNoise robust speaker verification with delta cepstrum normalization
This paper introduces a delta cepstrum normalization (DCN) technique for speaker verification under noisy conditions. Cepstral feature normalization techniques are widely used to mitigate spectral variations caused by various types of noise; however, little attention has been paid to normalizing delta features. A DCN technique that normalizes not only base features but also delta-features was r...
متن کاملLimited Data Speaker Verification: Fusion of Features
The present work demonstrates experimental evaluation of speaker verification for different speech feature extraction techniques with the constraints of limited data (less than 15 seconds). The state-of-the-art speaker verification techniques provide good performance for sufficient data (greater than 1 minutes). It is a challenging task to develop techniques which perform well for speaker verif...
متن کاملSVM based Emotional Speaker Recognition using MFCC-SDC Features
Enhancing the performance of emotional speaker recognition process has witnessed an increasing interest in the last years. This paper highlights a methodology for speaker recognition under different emotional states based on the multiclass Support Vector Machine (SVM) classifier. We compare two feature extraction methods which are used to represent emotional speech utterances in order to obtain...
متن کامل